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Abstract 

A rigorous solution is obtained for the 3-D temperature field in the thermal entrance region of rectangular ducts, for 
Newtonian fluids in slug flow, with constant wall heat flux and fluid longitudinal heat flux (H2 boundary conditions). 
The solution is presented as a series of the transverse Cartesian co-ordinates, where the coefficients depend on both the 
longitudinal co-ordinate and the different combinations of heated and adiabatic walls. The thermal entrance lengths 
and the Nusselt numbers are calculated as functions of both the Graetz number and the aspect ratio. The temperature 
profiles, the thermal entrance lengths. and the Nusselt numbers are presented and discussed in tables and graphs. 
‘I? 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 
a. b longer and shorter sides, respectively. of the rec- 
tangular cross section [m] 
D hydraulic diameter of the duct 2ah/(a+ h) [m] 
G: Graetz number D2 V/[r 
h heat transfer coefficient [W (m” K) -‘I 
.i. k, m, n summation indices 
K fluid thermal conductivity [W (m K) -‘I 
L,h dimensionless thermal entrance length 
Nu Nusselt number hD/K 
Nu* fully established Nusselt number 
P dimensionless heated perimeter length 
q heat flux [W mm’] 
r(a) dimensionless fluid temperature 
T,,(.) dimensionless fluid bulk temperature 
T,(e) dimensionless wall temperature 
V fluid velocity [m s-‘1 
.I-, J’, i dimensionless rectangular Cartesian co-ordinates 
=rh dimensionless longitudinal co-ordinate zjL,,,. 

Greek qmbols 
s( fluid thermal diffusivity [ml s-‘1 

*Author to whom correspondence should be addressed 

fl aspect ratio b/a < 1 
f f  (*) fluid temperature [K] 
0, fluid inlet temperature [K] 
t> *> i Cartesian co-ordinates [ml. 

1. Introduction 

The heat transfer behaviour of flows in rectangular 
ducts is a topic of special interest in compact heat 
exchangers, such as radiators or condensers in air-con- 
ditioning units, as discussed in [I]. The rectangular 
geometry involves a more complex and arduous analysis 
rather than circular geometry, even for the simplest case 
of slug flow, which may approximate the actual flow 
of low Prandtl number fluids (where the hydrodynamic 
length is very much longer than the thermal entry length, 
so a uniform velocity profile can be assumed in the ther- 
mal entrance region). An investigation concerning the 
flow behaviour in the thermal entrance region of rec- 
tangular ducts requires a 3-D solution to predict the fluid 

temperature profile and the pertinent developing Nusselt 
numbers. The boundary conditions too, in rectangular 
ducts, become complex, because there are many possi- 
bilities to impose different temperatures or heat fluxes on 
the four wetted sides. The most interesting boundary 
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condition, for its practical application, is the well known 
H2 condition, defined in [2], characterised by constant 
wall heat flux on the heated perimeter and constant fluid 
axial heat flux. Many different situations can be con- 
sidered too, assuming a particular condition for every 
side of the rectangle. In literature eight classical H2 ver- 
sions are proposed ; they are symbolically specified as 
follows : 4 (four heated sides), 3L (three heated sides and 
one adiabatic short side), 3S (three heated sides and one 
adiabatic long side), 2L (two heated long sides and two 
adiabatic short sides), 2s (two heated short sides and two 
adiabatic long sides), 2C (one long and one short heated 
sides), 1L (one heated long side), IS (one heated short 
side). The thermally developed flow has been object of 
several investigations, and the fully established Nusselt 
numbers for slug flow [3] and laminar flow [4] in H2 
boundary conditions have been exhaustively published. 
On the contrary, the thermally developing Nusselt num- 
bers for slug flow in H2 conditions are quoted in literature 
only for infinite parallel plates and square ducts. The 
same geometry, but with boundary conditions of the third 
kind, was considered in [5, 61. A solution is presented in 
[7], concerning the developing Nusselt numbers (as a 
function of the Graetz number and the duct aspect ratio), 
but only for the IL, IS, 2L, and 2S versions. 

The object of this work is to provide the 3-D fluid 
temperature profile in the thermal entry of rectangular 
ducts, with arbitrary aspect ratio for all the eight H2 
boundary conditions. Then the developing Nusselt num- 
bers and the thermal lengths are predicted by integrating 
temperature difference along the wetted perimeter of the 
rectangular cross section at different Graetz numbers. 
The theoretical model used in this paper is equivalent to 
the well studied 2-D transient heat conduction problem 
in a rectangular zone [S], the physical results constitute 
an original development in the field of basic thermal 
science and could provide a new tool for applications to 
engineering problems. 

2. Basic equations and solution 

Consider a steady laminar slug flow in the thermal 
entry length of a rectangular duct with uniform axial heat 
flux (the transverse velocity components and the effects 
of axial momentum and thermal diffusion are negligible). 
The hydrodynamic length is very much longer than the 
thermal entry length, hence a uniform velocity profile can 
be assumed in the thermal entrance region. A Cartesian 
system of co-ordinates c, $, < is assumed, with its origin 
in the left bottom corner of the inlet rectangular cross 
section ($ along the short side b, < perpendicular to the 
cross section). The fluid has uniform velocity V and inlet 
temperature 0, (i = 0). It is suitable introducing the 
dimensionless co-ordinates and temperature : 

The fluid inlet condition is T(s, y, 0) = 0, while the H2 
boundary conditions impose constant wall heat flux q on 
the heated perimeter, and adiabatic walls on the remain- 
ing part of the wetted perimeter : 

where d,, d,, d3, d4 are reported in Table 1 for the eight 
versions of the H2 conditions. 

The mathematical model is developed assuming, as 
usual, constant physical properties and neglecting axial 
conduction, power sources and natural convection. 
Consequently the dimensionless energy balance equation 
is readily obtained in the form : 

In order to solve equation (3), it proves convenient to 
take a double series of orthogonal functions : 

T(x,y,z) = i i C,,,,(z)cos(nn.x)cos (4) 
rl=Or~~=,~ 

By substituting equation (4) in equation (3), multiplying 
each term by cos(knx) cos(jrrjfi) and integrating over x 
and r5 a simple equation can be obtained, considering 
that: 

Table 1 
Boundary condition coefficients 

Version 

1L 
IS 
2L 
2s 
2c 
3L 
3s 
4 

4 Cl? 

0 0 
0 (or ~ 1) I (or 0) 

0 0 
-I 1 

O(or -I) I (or 0) 
O(or -I) I (or 0) 

-1 I 
-1 I 

0 (or - 1) I (or 0) 
0 0 

-1 1 
0 0 

O(or -I) I (or 0) 
-1 I 

0 (or - 1) 1 (or 0) 
-1 I 
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I - k2n’ $ CL,(z) if k # 0,j # 0 

0 if k=O,j#O 

= T(A, - C,,(z)) 
(5) 

if k # 0,j = 0 

1 +j Cd2 -4’ y- if k=O.j=O 

if k f:  0,j # 0 

if k = 0,j # 0 (6) 

! 0 if k#O,j=O 

1+B 
GLrd,)-~ if k = 0,j = 0 

G, P -(-) 
dz 4 

if k#O,j#O 

if k = O,,j # 0 
= (7) 

dcio P __ - 
0 dz 2 

if k#O.j=O 

dcoo $fi) if k=O>j=O 

where the numbers A, and L?, are inversely proportional 
to the square of the summation index : 

1+B 
Ak = [(-I)“&-d,]--- 

n2flk’ 
B, = [(-lyd,-d,]lfl(. 

n2.i2 

(8) 

Such a technique reduces the problem to a set of first 
order differential equations, containing the unknown 
coefficients Ck,(z). The inlet condition (T = 0 in z = 0) 
provides an interesting result : due to the orthogonality 
of the cosinusoidal systems, all the coefficients Ck,(z = 0) 
must be identically 0. The other coefficients Ck,(z) are 
easily obtained as the solution to the simple first order 
differential equations, linked to the boundary conditions ; 
they are : 

i 

C&) = 0 

if k # O,,j # 0 

1 ,I,,,,=A,[I--exp(-zz)] 

I if k # O,.j = 0 

(9) 

I if k = 0,j # 0 

! if k = 0,j = 0 

The cancellation of the coefficients C,, with k # 0, ,j # 0 
allows to obtain the 3-D temperature distribution as the 
sum of a single series, with very fast convergence. The 
longitudinal co-ordinate appears only in exponential 
functions, while the transverse co-ordinate appear only 
in cosinusoidal functions ; the final result reads as : 

+,$, A, [I -exp(- ziz)]cos(nrcx) 

1-B, [I -exp (- fE$z)]cos (nrri). (10) 

By specifying the suitable coefficients (P, A,, II,,), equa- 
tion (10) provides the 3-D developing temperature profile 
in the rectangular cross section of the thermal entrance 
region for all the eight versions of the H2 boundary 
conditions. 

3. Developing Nusselt numbers 

For any cross section of the rectangular duct, the Nus- 
selt number can be determined as a function of z, starting 
from the knowledge of the fluid bulk temperature and 
average wall temperature. From its definition the Nusselt 
number reads as : 

1 
Nu(=) = T,(T) - T&) 

Resorting to the temperature solution (IO), the defi- 
nitions of bulk temperature and wall temperature, given 
in [2], provide : 

Tb(z) = 
2P 

T-(x, ,v, z) dx dr; = (l+p+X z (12) 



+ 
i 

’ [d,T(.u.B,--)-(I;r(.v.O.-)1dr\. (13) 
0 I 

To complete the investigation, the thermal entrance 
length L,,, is calculated. as usual. by the numerical solu- 
tion to the equation : 

N14(r = I,,,,) = 1.05 Nu* (14) 

where the fully established Nusselt number is \!ell known 
in literature [?I]. and can be deduced too by equation 
(I 1) in the limit of : --t X (corresponding to the fully 
developed region). 

4. Results and discussion 

The explicit analytical expression for the temperature 
profile. equation (IO). has been processed for all the eight 
versions of the HZ boundary conditions in ;I ver)’ short 
time using a PC class computer. The introduction 01 
dimensionless temperature and co-ordinate\ allows to 
obtain a 3-D distribution depending only on the duct 
aspect ratio. The illustrative examples reported in Figs. 
I-4 refer to a flat rectangular duct (/i = 0.2). for the 4. 
3s. 3L. and 2C Lersionc. with three diiTcren[ decreasing 
Graetr mm~bers (i.e. for increasing values of the longi- 
tudinal co-ordinate z = I (;z). As shown in Fig. I. close 
to the fluid inlet section (G‘r = IOO), the four heated walls 
are responsible for a considerable increase in the wall 
temperature, mainly on the corners of the duct. while 
the bulk temperature remains verk low. The short sides 
present higher temperatures than the long sides. When : 
increases (G‘: = IO and I m Fig. 1 ) the fluid temperature 
incrwsrs. arriving at the fully established profile. A \imi- 
lar trend is shown in Fig. 2. for the 3S version. where the 
long adiabatic side (J. = 0) causes lower temperatures : 
the highest values occur on the two corners of the long 
heated side. the minimum at the centre of the long adia- 
batic wall. Figure 3 refers to the ?L version. the three 
heated walls give rise to a fluid temperature increase 
mainly on the corners of the short heated side. the 
opposite adiabatic short side keepx temperature at lower 
values. In Fig. 4 the temperature distribution is sketched 
for the 2C version. the two adjacent heated <ides of the 
rectangle produces a considerable temperature increase. 
mostly on their mutual corner. the minimum Lalue occur- 
ring on the opposite corner between the adiaha[ic sides. 

For the 1 S and 2s versions the coelticients B,,. equation 
(8). are identically zero. hence the temperature dis- 
tribution is reduced to ;I 2-D profile depending only on \- 
and 1. Analogously the coefficients A,; are identically zero 
for the 1 L and 2L versions, hence the pertinent tcm- 
perature profiles do not depend on .I. It is t(, point out 

0.3 Gz=lOO 

T 

0.2 

.o Y 

x 

x 

Fig. I. Tempern~ure Uribution in the thermal entrance length. 
four heated walls. 

that this behaviour is a peculiarity of the slug flow. In 
f&t the fully developed temperature distribution for the 
1 S. 2S, 1 L and 2L versions. in laminar fully developed 
flow with suitable spatial velocity profile, bears evidence 
of a dependence on both the co-ordinates .x and ,I’. as 
shown in the Figs. 4, 5. 7. and 8 of [4]. The semi-log- 
arithmic diagrams of Figs. 5 and 6 refer to the 1 S and IL 
versions, respectively, for various values of the Ciraetz 
number ; the heated side (s = I and 1’ = /I = 0.2. respec- 
tively) produces a sudden rise of the wall temperature 
while the temperature on the opposite side increases much 
more slowly. Figures 7 and X show the temperature dis- 
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T 

0.2 

.o Y 

X 

x 

Fig. 2. Temperature distribution in the thermal entrance length, 
3S version. 

tribution for the 2S and 2L versions, respectively; the 
minimum occurs on the straight line .I- = 0.5 (Fig. 7) and 
.1’ = /I/2 (Fig. 8) of the cross section. The temperature 
difference between the centre and the heated walls is very 
remarkable near the inlet section, but it is progressively 
smoothed as the fluid approaches the fully developed 
region. 

The thermal entrance length and the Nusselt numbers 
are very easily determined, in fact the numerical inte- 
gration of equation (13) and the numerical solution to 
equation (14) are very inexpensive in terms of com- 
putational time. In Fig. 9 the thermal entrance length is 
sketched as a function of the aspect ratio ; it is a mon- 
otonically increasing function of fl for the IL and 2L 

0.2 

Y 

T 

V 

4.2 

T 

3.7 

3.2 

0.0 ----- r ’ oy; 0.5 o.8 
Y 0.0 X 

Fig. 3. Temperature distribution in the thermal entrance length, 
3L version. 

versions, starting from the typical values of the infinite 
parallel plates, i.e. 0.064515 for one heated wall. and 
0.016129 for two heated walls, as discussed in [4], and 
reaching its maximum for the square duct. Quite different 
is the trend of L,,, for the other boundary conditions : in 
the range 0.1 < [I < I the thermal entrance length is a 
decreasing function of /j, except the 3s condition. In 
fact this version is very similar to the four heated walls 
condition up to /I = 0.6, then its thermal entrance length 
reaches a minimun and increases to the square duct value. 
It is very interesting to point out that. in the analysis of 
the developing temperature profile in slug flow. a very flat 
rectangular duct can be approximated as infinite parallel 
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I Gz=lOO 
-- h I 0.2 

0.15 
T 

0.1 

0.05 

0 

f--- Gz==lO 
0.8 

0.6 

0.4 T 

0.2 

0.0 

T 

0.2 

Y 

Fig. 4. Temperature distribution in the thermal entrance length. 
2C verskon. 

plates only in the frame of the IL (one heated wall) and 
2L (two heated walls) versions, all the other versions 
giving thermal entrance lengths very different from the 
typical slab values, in the limit of /I -+ 0. 

Equation (11) in the limit of z -+ u3 provides the fully 
developed Nusselt numbers, they have been evaluated 
and reported in Fig. 10 as a function of b ; they perfectly 
agree with the available data quoted in literature [2. 31. 
One can see how the trend of the Nusselt number depends 
on the considered version ; in fact for the boundary con- 
ditions lL, 2L, and 3L the established Nusselt number 
decreases with j?, while increases for the IS, 2S, and 3s 
versions, and remains constant for the 2C and 4 versions. 
In the limit of /I -+ 0, the fully established Nusselt number 
tends to 0 for the IS and 2s versions, to 3 for the 2C and 

J 
0 00 0 20 040 0 60 0.80 1 00 

x 

Fig. 5. Temperature distribution in the thermal entrance length. 
1S version. 

0 00 0 05 0.10 0.15 0 20 

Fig. 6. Temperature distribution in the thermal entrance length, 
IL version. 

3s versions, to 6 for the 4, 1 L, and 3L versions, to 12 for 
the 2L version. It is worth remembering that the Nusselt 
numbers for slug flow between infinite parallel plates is 
12 for two heated walls. and 6 for one heated wall [2]. 
Consequently only the 2L version of the rectangular duct 
reproduces, in the limit of b -+ 0, the slab with two heated 
walls, while the 4, 3L. and 1 L versions reproduce (in the 
same limit) the slab with only one heated wall. 
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I I 

I !  hi ’ L-l- 

0001 

I 
0 0001 

I -I 
0.00 0 20 0 40 0 60 0 80 1 00 

x 

001 I 

Fig. 7. Temperature distribution in the thermal entrance length, Fig. 9. The thermal entrance length as a function of the aspect 
2S version. ratio. 

, 

1 

T  01 

0.01 

0.001 

0 00 0 05 0 10 0.1s 0 20 

0.0 0.2 04 06 0.8 1.0 

P 

Fig. 10. Fully developed Nusselt number as a function of the 
aspect ratio. 

Fig. 8. Temperature distribution in the thermal entrance length, 
2L version. 

The developing Nusseh numbers depend on two par- 
ameters: the longitudinal co-ordinate (or the Graetz 
number) and the aspect ratio. An accurate investigation 
is presented in [7], related only to the lS, IL, 2S, and 2L 
versions. Introducing the co-ordinate zIh = z/L,, a very 
interesting peculiarity comes out : the thermal entrance 
lengths are very simple functions of the aspect ratio and 

the developing Nusselt ratio Nu(z,,)/Nu* is the same func- 
tion of z,,, for any version and does not depend on the 
aspect ratio. No available data exists in literature con- 
cerning the remaining H2 versions ; resorting to equation 
(11) the developing Nusselt numbers for these versions 
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Table 2 
Ratio between the developing and the established Nusselt numbers, 2C version 

/r ZIh = 0.1 -,,I = 0.2 Tlh = 0.3 zlh = 0.4 z,,, = 0.5 zIh = 0.6 zth = 0.7 z,,, = 0.8 zIh = 0.9 zlh = 1 

I 2.125 
0.9 2.115 
0.8 2.081 
0.7 2.014 
0.6 I.909 
0.5 I.772 
0.4 I.623 
0.3 I.490 
0.2 I.424 
0.1 I.420 

1.612 
1.606 
1.585 
1.544 
I.481 
1.404 
I.336 
1.29’) 
I.293 
I.293 

1.396 1.275 1.198 1.146 1.110 
1.392 1.272 1.196 1.145 1.109 
1.377 1.262 1.189 1.140 1.106 
1.349 1.242 1.176 1.131 I.101 
1.308 1.215 1.158 1.121 I.094 
1.262 1.188 1.143 1.112 1.090 
1.23 I 1.174 1.137 I.110 1.089 
1.221 1.171 1.136 1.109 I .0x9 
1.220 1.171 1.136 1.109 I .OXY 
1.220 1.171 1.136 1.109 I .0X9 

1.083 1.064 1.05 
I.083 1.064 1.05 
1.081 1.063 1.05 
1.078 1.062 1.05 
1.075 1.061 1.05 
I.073 1.060 1.05 
1.073 1.060 1.05 
1.073 1.060 1.05 
1.073 1.060 1.05 
I.073 1.060 1.05 

Table 3 
Ratio between the developing and the established Nusselt numbers, 3L version 

..- 

P Tlh = 0.1 z,,, = 0.2 I,,, = 0.3 z,,, = 0.4 z,,,=O.5 1,,=0.6 ith =0.7 z,,,=O.X z,,,=O.Y zIh= 1 

I 1.756 
0.9 1.682 
0.8 I.610 
0.7 1.541 
0.6 1.483 
0.5 1.442 
0.4 1.423 
0.3 1.419 
0.2 1.419 
0.1 1.41Y 

I.395 
I.359 
I.330 
I.308 
I.296 
1.293 
1.292 
1.291 
1.291 
1.2Yl 

1.256 
I 239 
I.227 
I.221 
I.218 
I.218 
I.218 
I.217 
I.217 
I.217 

I.184 
1.176 
1.171 
I I 70 
I.169 
I.169 
1.169 
I.169 
I.169 
I.169 

I.140 1.110 I.089 1.072 
1.136 1.109 I.088 1.072 
1.135 1.108 I.088 1.072 
1.134 I.108 1.088 1.072 
1.134 1.108 I .088 1.072 
1.134 1.108 1.088 1.072 
1.134 1.108 1.088 1.072 
1.134 I.108 1.088 1.072 
1.134 I.108 1.0X8 1.072 
1.134 I.108 1.088 1.072 

1.060 
1.060 
1.060 
1.060 
I.060 
I.060 
1.060 
I.060 
I.060 
I.060 

1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1 .os 

Table 4 
Ratio between the developing and the established Nusselt numbers, 3S version 
-- 

B ZIh = 0.1 Z,h = 0.2 Zih = 0.3 Zfh = 0.4 ZIh = 0.5 q,, = 0.6 zth = 0.7 & = 0.8 r,,, = 0.0 Lth = 1 

I 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

1.756 1.395 1.256 1.184 1.140 1.110 1.089 1.072 1.060 I .05 
1.834 I.436 1.279 1.197 I.147 1.114 I.090 I .073 1.060 I .05 
1.923 1.487 I.311 I.216 I.158 1.120 I.094 I .075 1.061 1.05 
2.01 1 1.540 I.346 1.239 1.173 1.129 1.099 1.078 1.062 1.05 
2.081 I.583 I.375 I.259 1.187 1.138 I.104 1.080 I .063 1.05 
2.113 1.603 I.389 I.269 1.194 1.143 1.108 1.082 1.064 I .05 
2.066 1.574 I.369 1.255 I.184 1.136 1.103 1.080 1.063 1.05 
1.890 I.468 1.298 I .20x 1.153 1.1 I7 1.092 1.074 1.060 1.05 
1.607 I .32x 1.226 1.171 1.134 1.108 1.088 1.072 1.060 1.05 
I.422 1.29 I 1.218 1.169 1.134 I.108 1.088 1.072 I .OSY 1.05 
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Ratio between the developing and the established Nusselt numbers. 4 version 
-____ 

B Zth = 0.1 Zlh = 0.2 lfil = 0.3 :,,,=0.4 z,,=O.5 qh=0.6 -,,=0.7 1,,=0.8 ;,,,=0.9 zIh= 1 

1 2.098 1.592 
0.9 2.086 1.584 
0.8 2.049 1.561 
0.7 1.981 1.520 
0.6 1.872 1.456 
0.5 1.740 I.385 
0.4 I.597 1 324 
0.3 1.476 1.294 
0.2 1.421 1.2X9 
0.1 1.418 1.289 

1.380 1.263 
1.375 1.259 
1.359 1.248 
1.331 1.229 
1.290 I 202 
I.250 1.180 
1.224 I.168 
1.217 I.167 
1.216 I. I67 
I.216 1.167 

1.1X9 I.139 1.105 1.080 I.063 1.05 
1.186 1.137 1.104 I.080 1.062 1.05 
1.178 1.132 I.101 1.078 I.062 1.05 
1.166 1.124 I.096 1.076 1.061 1.05 
1.149 I.1 14 I.090 1.073 1 ,060 1.05 
1.137 1.108 I.087 1.071 1.059 1.05 
I.133 1.106 1.087 1.071 1.059 I .05 
1.132 1.106 I .0x7 1.071 1.059 1.05 
I.132 1.106 1.087 1.07 I 1.059 1.05 
1.132 1.106 1.087 1.071 I.059 I .05 

too can be easily calculated. Tables 2- 5 show the Nusselt 
ratio for these remaining versions (2C, 3L, 3S, 4) as a 

function of both the aspect ratio and the axial co-ordinate 
6h ; obviously the Nusselt ratio is always I .05 for zth = I. 

For any cross section (: = constant) of the thermal 
entry region, the Nusselt number is a monotonically 
increasing function of p for all the versions. except the 
3s condition (Table 4), where the Nusselt number at first 
increases with /3 reaching its maximum at /I = 0.5, then 
decreases to the square duct value. 

A comparison between these numerical results and the 
graphical data quoted in literature can be performed only 
in the square duct with four heated walls, page 293 in [2], 
the agreement is quite satisfactory. 

5. Concluding remarks 

The paper has analysed the thermal behaviour of a 

slug flow in the thermal entrance region of rectangular 
ducts, in H2 boundary conditions. The 3-D temperature 
distribution has been analytically determined as a simple 
series of cosinusoidal functions of x and p, and linear and 
exponential functions of Z; the coefficients of the series 
depend on the different combinations of heated and adia- 
batic walls. The thermal entrance lengths are numerically 
calculated and shown in a graph as a function of the 
aspect ratio. At last the developing Nusselt numbers have 
been calculated as functions of both the duct aspect ratio 
and the Graetz number, they are presented in exhaustive 
Tables. 
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